## ADVANCED PLACEMENT PHYSICS B EQUATIONS FOR 1998

## **NEWTONIAN MECHANICS**

a = acceleration

F = force

f = frequency

J = impulse

 $\ell = length$ 

P = power

r = distance

T = period

W = work

 $\theta$  = angle

 $\tau = torque$ 

t = time

N = normal force

p = momentum

s = displacement

x = displacement

U = potential energy

v = velocity or speed

 $\mu$  = coefficient of friction

 $v = v_0 + at$ 

 $s = s_0 + v_0 t + \frac{1}{2} a t^2$  f = frequent h = height

 $v^2 = v_0^2 + 2a(s - s_0)$  K = Kinetic energy k = spring constant

 $\sum \mathbf{F} = \mathbf{F}_{net} = m\mathbf{a}$   $\ell = \text{length}$  m = mass

 $F_{fric} \leq \mu N$ 

 $a_c = \frac{v^2}{r}$ 

 $\tau = rF \sin \theta$ 

 $\mathbf{p} = m\mathbf{v}$ 

 $\mathbf{J} = \mathbf{F}\Delta t = \Delta \mathbf{p}$ 

 $K = \frac{1}{2} m v^2$ 

 $\Delta U_g = mgh$ 

 $W = \mathbf{F} \cdot \mathbf{s} = Fs \cos \theta$ 

 $P_{avg} = \frac{W}{\Lambda t}$ 

P = Fv

 $\mathbf{F}_{S} = -k\mathbf{x}$ 

 $U_S = \frac{1}{2} kx^2$ 

 $T_{S} = 2\pi \sqrt{\frac{m}{k}}$ 

 $T_p = 2\pi \sqrt{\frac{\ell}{\rho}}$ 

 $F_G = -\frac{Gm_1m_2}{r^2}$ 

 $U_G = -\frac{Gm_1m_2}{r}$ 

**ELECTRICITY AND MAGNETISM** 

 $F = \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{r^2}$ 

 $\mathbf{E} = \frac{\mathbf{F}}{a}$ 

 $U_E = qV = \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{r}$ 

 $E_{avg} = -\frac{V}{d}$ 

 $V = \frac{1}{4\pi\epsilon_0} \sum_{r=1}^{q} r$ 

 $C = \frac{Q}{V}$ 

 $C = \frac{\epsilon_0 A}{d}$ 

 $U_C = \frac{1}{2} QV = \frac{1}{2} CV^2$ 

 $I_{avg} = \frac{\Delta Q}{\Delta t}$ 

V = IR

 $C_p = \sum_i C_i$ 

 $R_{\mathcal{S}} = \sum_{i} R_{i}$ 

 $F_B = q v B \sin \theta$ 

 $F_B = BI\ell \sin \theta$ 

 $B = \frac{\mu_0}{2\pi} \frac{I}{r}$ 

 $\phi_m = \mathbf{B} \cdot \mathbf{A} = BA \cos \theta$ 

 $\varepsilon_{avg} = -\frac{\Delta \phi_m}{\Delta t}$ 

 $\mathcal{E} = B\ell v$ 

A = area

B = magnetic field

C = capacitance

d = distance

E = electric field

 $\varepsilon = \text{emf}$ 

F = force

I = current

 $\ell = length$ P = power

Q = charge

q = point charge

R = resistance

r = distance

t = time

U = potential (stored) energy

V = electric potential or potential difference

v = velocity or speed

 $\rho$  = resistivity

 $\phi_m$  = magnetic flux

# ADVANCED PLACEMENT PHYSICS B EQUATIONS FOR 1998

## THERMAL PHYSICS

 $\Delta \ell = \alpha \ell_0 \Delta T$ 

A = area

c = specific heat or molarspecific heat

Q = mL

e = efficiency

 $Q = mc\Delta T$ 

F = force

 $K_{avg}$  = average molecular

 $p = \frac{F}{\Delta}$ 

kinetic energy L = heat of transformation

pV = nRT

 $\ell = length$ M = molar mass

m = mass of samplen = number of moles

 $K_{avg} = \frac{3}{2} k_B T$ 

p = pressure

 $v_{rms} = \sqrt{\frac{3RT}{M}} = \sqrt{\frac{3k_BT}{\mu}}$  T = temperature U = internal energy

Q = heat transferred

 $W = p \Delta V$ 

V = volume $v_{rms}$  = root-mean-square

velocity

 $Q = nc\Delta T$ 

W =work done by system  $\alpha$  = coefficient of linear

 $\Delta U = Q - W$ 

expansion

 $\mu$  = mass of molecule

 $\Delta U = nc_V \Delta T$ 

$$e = \frac{W}{Q_H} = \frac{Q_H - Q_C}{Q_H}$$

$$e_C = \frac{T_H - T_C}{T_H}$$

### WAVES AND OPTICS

 $v = v\lambda$ 

d = separation

f = focal length

 $n = \frac{c}{r}$ 

h = height

L = distance

 $n_1 \sin \theta_1 = n_2 \sin \theta_2$ 

M = magnificationm =an integer

 $\sin \theta_C = \frac{n_2}{n_1}$ 

n = index of refraction

R = radius of curvature

 $\frac{1}{s_i} + \frac{1}{s_0} = \frac{1}{f}$ 

s = distancev = speed

x = distance

 $\lambda$  = wavelength

 $M = \frac{h_i}{h_0} = -\frac{s_i}{s_0}$ 

v = frequency

 $\theta$  = angle

$$f = \frac{R}{2}$$

 $d \sin \theta = m\lambda$ 

$$x_m \approx \frac{m \lambda L}{d}$$

## ATOMIC AND NUCLEAR PHYSICS

E = hv = pc

E = energy

 $K_{max} = hv - \phi$ 

K = kinetic energym = mass

p = momentum

 $\lambda = \frac{h}{p}$ 

 $\lambda$  = wavelength

v = frequency

 $\Delta E = (\Delta m)c^2$ 

 $\phi$  = work function

# GEOMETRY AND TRIGONOMETRY

Rectangle

A = area

A = bh

C = circumference

Triangle

V = volume

S = surface area

 $A = \frac{1}{2}bh$ 

b = base

Circle  $A = \pi r^2$  h = height $\ell = length$ 

 $C = 2\pi r$ 

w = widthr = radius

Parallelepiped

 $V = \ell wh$ 

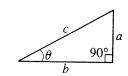
Cylinder

$$V = \pi r^2 \ell$$

$$S = 2\pi r \ell + 2\pi r^2$$

Sphere

$$V = \frac{4}{3} \pi r^3$$


$$S = 4\pi r^2$$

Right Triangle
$$a^2 + b^2 = c^2$$

$$\sin \theta = \frac{a}{c}$$

$$\cos \theta = \frac{b}{c}$$

$$\tan \theta = \frac{a}{b}$$

